« Left-fold enumerators: a safe, expressive and efficient I/O interface for Haskell | Main | Pretty-Printing a Really Long Formula (or, "What a Mathematician Could Learn from Haskell") »
Thursday
Sep112008

Theorem Proving for Verification

This Galois Tech Talk was held on Tuesday September 16th, 10.30am, with John Harrison, Principal Engineer at Intel, talking about theorem proving for formal verification. (You can also check out his Handbook of Practical Logic and Automated Reasoning). (.pdf slides, proof demo)


Left-fold IO


Abstract


The theorem proving approach to verification involves modelling a system in a rich formalism such as higher-order logic or set theory, then performing a human-driven interactive correctness proof using a proof assistant. In a striking contrast, techniques like model checking, by limiting the user to a less expressive formalism (propositional logic, CTL etc.), can offer completely automated decision methods, making them substantially easier to use and often more productive. With this in mind, why should one be interested in the theorem proving approach? In this tutorial I will explain some of the advantages of theorem proving, showing situations where the generality of theorem proving is beneficial, allowing us to tackle domains that are beyond the scope of automated methods or providing other important advantages. I will talk about the state of the art in theorem proving systems and and give a little demonstration to give an impression of what it's like to work with such a system.

John Harrison talking about theorem provingGalois has been holding weekly technical seminars for several years on topics from functional programming, formal methods, compiler and language design, to cryptography, and operating system construction, with talks by many figures from the programming language and formal methods communities. The talks are open and free.

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.

PostPost a New Comment

Enter your information below to add a new comment.

My response is on my own website »
Author Email (optional):
Author URL (optional):
Post:
 
Some HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <code> <em> <i> <strike> <strong>